The degree to which structural amendments can be made in order to comply with SOLAS amendments may be economically compromised in comparison with the current SOLAS 2009 Regulations. This is partly due to the required financial risk associated with potential future losses. However, by implementing these amendments, a substantial increase in the Subdivision Index R for passenger ships carrying up to 1,200 persons and, specifically, for the operators and designers of Roll-On / Roll-Off (RO-RO) passenger ships for service in European Union (EU) waters, the future of the Subdivision Agreement namely EC Directive 2003/25/EC is amended. To mention just two: Hence, the paper will discuss the concerns of ship owners, operators and designers and how the upcoming international damage stability regulations may influence the design process. The present day is characterized by a new generation of purpose-designed, powerful tugs in this service. One of the main reasons for this is the increasing demand for escorted tankers which would be required to breach the inner cargo tanks. Work from Estonia, which is accessible to an interested public so as to help debate proceed on the basis of an informed decision-making process. Work from Estonia, which is accessible to an interested public so as to help debate proceed on the basis of an informed decision-making process. One of the key advantages of having such tugs is that they can operate in restricted waters and can be used for a variety of tasks such as assisting in the handling of damaged ships. In case of military ships these are well developed, while a well-trained crew is available to respond adequately. But even for these vessels underwater damage is possible, and in addition, the ship's residual structural integrity is needed to be assessed and maintained. This paper presents a method using full ship FEA to conduct damaged ship numerical simulations and sensors are combined to limit uncertainty and facilitate informed decision-making in emergencies. This paper will present a methodology whereby numerical simulation tools have recently been developed. Research shows that predicting breach size and the ensuing flooding process by utilising flooding sensors to assist numerical simulation tools have recently been developed. Research shows that predicting breach size and the ensuing flooding process purely by using flooding sensors is possible, but this is highly dependent on sensor position and density. Flooding sensors have further limitations in detecting breaches located ahead the waterline, as only through the breach wall mounting of these sensors is possible to detect the breach. The computational tools are based on a three dimensional linear method to predict the hydrodynamic loads acting on intact and damaged ships. Motions and load calculations there is a general assumption that the watertight bulkheads will remain tight and contain the flood and progressive flooding is often not considered. Through-life performance of cancer pipelines is key to survivability during an event of flooding. Following an event of flooding, the ship can be assessed using flooding sensors to predict the breach size and the ensuing flooding process. This paper presents a methodology whereby numerical simulation tools have recently been developed. Research shows that predicting breach size and the ensuing flooding process purely by using flooding sensors is possible, but this is highly dependent on sensor position and density. Flooding sensors have further limitations in detecting breaches located ahead the waterline, as only through the breach wall mounting of these sensors is possible to detect the breach. The computational tools are based on a three dimensional linear method to predict the hydrodynamic loads acting on intact and damaged ships. Motions and load calculations there is a general assumption that the watertight bulkheads will remain tight and contain the flood and progressive flooding is often not considered. Through-life performance of cancer pipelines is key to survivability during an event of flooding. Following an event of flooding, the ship can be assessed using flooding sensors to predict the breach size and the ensuing flooding process.
the naval architecture challenges and the benefits of rapid assessment to stabilising an emergency. And beyond that, the potentially very significant value of post-emergency assistance in supporting efforts to reach a best place of repair and to have the vessel back in service as quickly and as inexpensively as possible. Typical scenarios include grounding, collision, fire/explosion, hull failure and general benefits are reasonably understood, however, almost every case is different in its own way. We draw upon Lloyd’s Register’s SERS’ 35 years of experience, including 400 emergencies and 1600 exercise scenarios, in presenting various scenarios and the interesting challenges that they offer.

Accidents happen, thereafter salvage takes place. On the other hand, ship’s owner decision is either going for scrapping or repairing based on the coming feedback. On the other side the shipyard is still as it is, in a fixed site, waiting for the damaged ship to arrive. Wasted time can be partially saved by sending drawings to the shipyard for pre-fabrication. But will be subject to martial availability and the shipyard production time line. But by thinking even without the box, the author with his docking background, believes that the shipyard can be reconstructed by self-propelled docking and integrated facilities that will be named hereafter F-Yard [Floating Shipyard], to serve in such an emergency case. Based on the received data, software utilizing numerical methods are typically employed because the areas and volumes can quickly become tedious and long to compute using other methods. Stability tests in damage conditions, as in shipyards, technical office derivations, are performed with software packages that static firms for conceptual design information are able to quickly compute the required data. This paper focuses on evaluating old and new methods of damaged stability calculations in the shipbuilding CAD tools.

Accidents happen, thereafter salvage takes place. On the other hand, ship’s owner decision is either going for scrapping or repairing based on the coming feedback. On the other side the shipyard is still as it is, in a fixed site, waiting for the damaged ship to arrive. Wasted time can be partially saved by sending drawings to the shipyard for pre-fabrication. But will be subject to martial availability and the shipyard production time line. But by thinking even without the box, the author with his docking background, believes that the shipyard can be reconstructed by self-propelled docking and integrated facilities that will be named hereafter F-Yard [Floating Shipyard], to serve in such an emergency case. Based on the received data, software utilizing numerical methods are typically employed because the areas and volumes can quickly become tedious and long to compute using other methods. Stability tests in damage conditions, as in shipyards, technical office derivations, are performed with software packages that static firms for conceptual design information are able to quickly compute the required data. This paper focuses on evaluating old and new methods of damaged stability calculations in the shipbuilding CAD tools.

Accidents happen, thereafter salvage takes place. On the other hand, ship’s owner decision is either going for scrapping or repairing based on the coming feedback. On the other side the shipyard is still as it is, in a fixed site, waiting for the damaged ship to arrive. Wasted time can be partially saved by sending drawings to the shipyard for pre-fabrication. But will be subject to martial availability and the shipyard production time line. But by thinking even without the box, the author with his docking background, believes that the shipyard can be reconstructed by self-propelled docking and integrated facilities that will be named hereafter F-Yard [Floating Shipyard], to serve in such an emergency case. Based on the received data, software utilizing numerical methods are typically employed because the areas and volumes can quickly become tedious and long to compute using other methods. Stability tests in damage conditions, as in shipyards, technical office derivations, are performed with software packages that static firms for conceptual design information are able to quickly compute the required data. This paper focuses on evaluating old and new methods of damaged stability calculations in the shipbuilding CAD tools.

Accidents happen, thereafter salvage takes place. On the other hand, ship’s owner decision is either going for scrapping or repairing based on the coming feedback. On the other side the shipyard is still as it is, in a fixed site, waiting for the damaged ship to arrive. Wasted time can be partially saved by sending drawings to the shipyard for pre-fabrication. But will be subject to martial availability and the shipyard production time line. But by thinking even without the box, the author with his docking background, believes that the shipyard can be reconstructed by self-propelled docking and integrated facilities that will be named hereafter F-Yard [Floating Shipyard], to serve in such an emergency case. Based on the received data, software utilizing numerical methods are typically employed because the areas and volumes can quickly become tedious and long to compute using other methods. Stability tests in damage conditions, as in shipyards, technical office derivations, are performed with software packages that static firms for conceptual design information are able to quickly compute the required data. This paper focuses on evaluating old and new methods of damaged stability calculations in the shipbuilding CAD tools.
International Conference
Damaged Ship IV

16-17 May 2018, RINA HQ, London, UK

To register, simply complete all sections of this form and return it with your payment to:
The Conference Department, RINA
8-9 Northumberland Street
London, WC2N 5DA
TEL: +44 (0)20 7235 4622
FAX: +44 (0)20 7259 5912
E-MAIL: conference@rina.org.uk

TITLE (Dr, Mr, Eur Ing):

NAME (as it should appear on name badge):

POSITION:

COMPANY (as it should appear on name badge):

INVOICE ADDRESS:

POSTCODE:
COUNTRY:
TELEPHONE:
FAX:
E-MAIL:

CONTACT MAILING ADDRESS (if different):

POSTCODE:
COUNTRY:
TELEPHONE:
FAX:
E-MAIL:

Please indicate your preferred method of payment:

I enclose a cheque for:
(made payable to RINA)

£

Please send me an invoice for:

£

Bank transfer details enclosed for:

£

Please debit my credit card by:

£

Card Number: (Visa/Amex/Mastercard)

Expiry Date: Signature:

How did you hear about this conference?

REGISTRATION FEE

By 17/04/18 After 17/04/18

RINA MEMBERS: £650+VAT = £780
NON-MEMBERS: £750+VAT = £900

CONCESSIONS: (Retired/Students etc.) £335+VAT = £402
PRINCIPAL AUTHOR £140+VAT = £168
ADDITIONAL AUTHOR £650+VAT = £780

The registration fee includes printed conference papers, lunch, refreshments, reception, a CD of the papers and presentations after the conference.

CONFERENCE PAPERS
Delegates will receive a copy of the conference CD-ROM which will include the presentations, this will be posted out around 10-12 weeks after the conference.

Additional copies of the conference papers will also be for sale after the event in both print and CD ROM versions. If you would like to order copies, please fill in the relevant sections.

I am unable to attend the conference, please reserve me _______ set(s) of Conference proceedings

Papers @ £120 (members) £140 (non-members)

CD ROM £120 (members) £140 (non-members)

For a full list of the Institution’s Conference papers, CD-ROM’s and other technical publications please contact our Bookshop Assistant on +44 (0)20 7235 4622 or via e-mail at: publications@rina.org.uk

PAYMENTS
Payment must be made in pounds sterling by Eurocheque, cheque drawn on a bank with a UK branch address, credit card (Visa/Amex/Mastercard) or bank transfer. Please note RINA requires payment before the conference date.

Account Name: The Royal Institution of Naval Architects;
Account Number: 10041277; Account Code: 160016
Bank Address: Royal Bank of Scotland PLC, Belgravia Branch, 24 Grosvenor Place, London, SW1X 7HF, UK.
IBAN: GB14RBOS16001610042127
SWIFT No: ROBOSGB2L

VAT: Under UK Customs and Excise regulations delegates from all countries are required to pay VAT on any course taking place in the UK. Delegates from outside the UK may be entitled to reclaim this cost.

VENUE
The Venue for the conference is RINA HQ, 8-9 Northumberland Street, London, WC2N 5DA, UK.

ACCOMMODATION
Upon registration you will be provided with details of a hotel booking service offering reduced rate accommodation for conference participants.

CONTINUING PROFESSIONAL DEVELOPMENT
RINA Certificates of Attendance will be issued at the event, which contributes towards the Institution’s Continuing Professional Development Scheme. For further details regarding the scheme please contact Giuseppe Gigantesco, Director, Professional Affairs on Tel: +44 (0)20 7235 4622 or e-mail: membership@rina.org.uk

STUDENT SPONSORSHIP
A number of sponsored places at this conference are available for Student Members of RINA. For more information, please contact Nick Cox, Professional Affairs, RINA on Tel: +44 (0)20 7235 4622 or e-mail: ncx@rina.org.uk.

PROMOTIONAL OPPORTUNITIES
Why not use this conference to promote your company’s products and services? It provides an excellent opportunity to increase your profile and to network with a highly focused audience. We offer a number of cost effective options, including various conference sponsorship packages, exhibition space and literature distribution. If you are interested in any of these promotional opportunities please contact John Payten, at JP Media Services, j.payten@jpmediaservices.com to discuss your individual requirements.

CANCELLATION CHARGES
Cancellations received in writing two weeks before the event takes place will be subject to administration charge of £200+VAT. Cancellations received after this time cannot be accepted and are subject to the full event fee. Delegates may be substituted; however, this must be sent in writing and confirmed with the conference Co-ordinator. It may be necessary for reasons beyond our control to alter the content and timing of the programme. In the unlikely event that RINA cancels the event for any reason, our liability is limited to the return of the registration fee.

PRIVACY
Personal data held by RINA will only be used in connection with RINA activities, and will not be passed to third parties for other use. Full details of RINA’s Privacy Policy are available online.

I wish to receive information on technical developments in or related to the maritime industry and on future RINA events. I understand that I may stop receiving such information at any time.

If you have any questions regarding this or any other RINA event please contact, our Conference Organiser on:

Tel: +44 (0)20 7235 4622 Fax: +44 (0)20 7259 5912
E-Mail: conference@rina.org.uk www.rina.org.uk/events

www.rina.org.uk/Damaged_Ship_IV